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Abstract

We consider the possibility of characterizing the low altitude contribution to the seeing at
potential Pan-STARRS sites using lunar shadow band ranging (SHABAR). We show how the
shadow band spatial correlation function (SBSCF) can be computed in the geometric optics
limit of wave optics (and clarify the assumptions under which this is valid). For a circular disk
we recover Beckers’ results, though with a slightly different window function. The formulation
developed here applies for an extended object of arbitrary shape, allowing one treat the moon
(which is highly non-uniform). We show the relation between the SBSCF and the seeing and
we also model the form of the spatio-temporal correlation function. We discuss confusion with
other sources of correlated intensity fluctuations. We show how the scintillation strength profile,
and hence C2

n(h), can be recovered from the SBSCF obtained from a linear SHABAR array by a
regularized inversion algorithm that can be implemented as a direct convolution of the SBSCF,
and we discuss the relation between this and the Weiner filter for this problem. We also present
an approximate inversion algorithm that is a smoothed second derivative of the 1-D SBSCF.
We discuss signal to noise issues.

Revision History:
2003/11/08 NK. First cut at intro and analysis.
2003/11/14 NK. Added real lunar images + simple C2

n(h) estimator.
2003/11/29 NK. Added Fourier inversion + elaborated on simple inversion algorithm
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1 Introduction

‘Shadow Band Ranging’ (SHABAR) uses the correlation between scintillometers bathed in light from
extended objects to probe the profile of seeing inducing atmospheric refractive index fluctuations
at low altitude (Seykora (1993); Beckers (1993)). SHABAR exploits the fact that the size, and
therefore also the brightness, of an extended object seen through a layer of turbulence will fluctuate
with time. If the layer is at distance z, and the angular diameter of the object is Ω then the
fluctuations measured by two scintillometers a distance d apart will be strongly correlated if d < Ωz
and vice versa. From measurements of correlations at separations of 1cm to 1m using the moon
should allow one to probe the profile of the boundary layer on scales from of order 1m to several
hundred m.

Solar SHABAR has been used effectively for site testing for the ATST (Beckers, 2001). Hick-
son (private communication) has successfully performed lunar SHABAR measurements. SHABAR
analysis could potentially be very useful for Pan-STARRS in comparing Mauna-Kea and Haleakala
since these sites presumably have almost identical high-altitude seeing. It may also be useful during
operations as a probe of local sources of seeing.

2 Analysis

Beckers (1993) uses the Roddier (1981) formula for the scintillation of a point source as observed
through a telescope with a simple circular aperture of diameter D in the geometric optics limit:
D �

√
λz where z is the distance of the refractive fluctuations. Beckers assumes that the scintillation

for an extended disc of angular diameter Ω as measured by a scintillometer of diameter Ddet is given
by the same formula, but with D replaced by D + zΩ. As we shall see, that is not quite correct.

Hickson and Lanzetta (Hickson, personal communication) start from wave optics, but assume
at the outset that the phase error introduced by the atmosphere is small. This assumption was
also used by Hill, Radick and Collados (http://atst.nso.edu/site/reports.html) in their C2

n analysis
for the ATST site survey. This assumption is commonly used to analyze scintillation of point
sources, where the relevant scale — the Fresnel scale rf =

√
hλ ∼ 5cm(h/5km)1/2(λ/0.5µm)1/2

— is small compared to the Fried scale r0 (in good conditions at least). However for extended
objects, and except for very altitude fluctuations, this is too restrictive. At distance z, an object
of angular diameter Ω projects to a disk of diameter D = hΩ whereas the phase difference across
that scale is δϕ =

√
Sϕ(D) =

√
6.88(Ωz/r0)5/6 which is small compared to unity only for distances

z <∼ 7m(r0/20cm)(0.01/Ω).
Here, following Hickson and Lanzetta, we start from diffraction theory, and show how the shadow

band correlation function for an extended object can be related to the power spectrum of the
atmospheric wavefront corrugations in the geometric optics limit, and further assuming that the
fractional intensity fluctuations are small, but without the restriction on the phase errors be small.

2.1 Linear Geometric Optics Limit of Wave Optics

Consider first the intensity of radiation from a distant point source arriving at a plane at z = 0
oriented perpendicular to the source direction. Refractive index fluctuations along the light path
at distance z will introduce a phase error ϕ(x), so the electric field of the emerging wave will be
E(x, z) ∝ eiϕ(x). Here x denotes physical separation perpendicular to the light path. According to
diffraction theory, the complex field at position x on the z = 0 plane is, modulo an uninteresting
constant phase factor,

E(x, 0) =
1

iλz

∫
d2x′ E(x′, z)eiπ|x−x′|2/λz (1)

or E(x, 0) = E(x, z) ? G(x) with G(x) = exp(iπx2/λz)/iλz. Now the Fourier transform of G is
G̃(k) =

∫
d2x G(x) exp(ik · x) = exp(−ik2zλ/4π), so, from the convolution theorem, the spatial

transform of the field is
Ẽ(k, 0) = Ẽ(k, z)e−ik2zλ/4π. (2)
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We recognize, in the argument of the exponential, the square of the product of the spatial frequency
of the refractive index fluctuations k and the Fresnel scale rF =

√
zλ.

For refractive index fluctuations at spatial frequency k such that

k2zλ � 1 (3)

we can expand the exponential in (2) to give

Ẽ(k, 0) = Ẽ(k, z)(1− ik2zλ/4π + . . .) (4)

where . . . denotes terms of order (k2zλ)2 or higher. Equivalently, in real space,

E(x, 0) = E(x, z)
(

1 +
izλ

4π

∇2E(x, z)
E(x, z)

+ . . .

)
. (5)

Here ∇2 denotes the two dimensional Laplacian operator. With E(x, x) = exp(iϕ(x)), this becomes

E(x, 0) = E(x, z)
(

1 +
zλ

4π
(∇2ϕ + i|∇ϕ|2) + . . .

)
, (6)

and the normalized irradiance is

I(x) =
|E(x, 0)|2

|E(z)|2
= 1 +

zλ

2π
∇2ϕ + . . . (7)

where we have further assumed that
k2zλϕk � 1. (8)

Here ϕk is the typical phase fluctuation generated by fluctuations on scale k. Since the phase error
ϕk = 2πη/λ, where η(x) is the wavefront deviation, we can also write the intensity as I = 1 + δI
with

δI(x) = z∇2η + . . . (9)

which we recognize as the linearized (i.e. small amplification, no caustics) limit of geometric optics.
Thus provided both conditions (3; geometric optics) and (8; linearity) hold there is a very simple

linear relationship between the measurable intensity and the wavefront corrugations imposed by the
atmosphere. We shall presently show that both of these conditions hold to a very good approximation
for those spatial frequencies that are responsible for lunar scintillation.

2.2 Finite Source and Detector Size

Equation (9) applies for a point source and a point like detector. If the detector has finite size,
the intensity fluctuations measured are the true fluctuations convolved with an appropriate window
function. Furthermore, if the source has a finite size, this is equivalent to what would be seen for a
sum of incoherent point sources, so this introduces a smoothing with a window function Wsrc(x):

δI(x) = h sec(ζ)Wdet(x) ? Wsrc(x) ?∇2η(x) (10)

where we have replaced z by h sec ζ with ζ the zenith angle and h the altitude. For observations of
the full moon, for example, Wsrc(x) is a disc of diameter Dsrc = hΩ sec ζ. However, even in this case
the double convolution is not quite the same as convolving with a single disk of radius Dsrc + zΩ as
assumed by Beckers. The source window function for an arbitrary source can be obtained from an
image.

The intensity fluctuation is then simply the convolution of the Laplacian of the wavefront de-
formation η(η) with the detector and source window functions. Now for Kolmogorov turbulence,
η(x) has power spectrum ∝ k−11/3 so the Laplacian has power spectrum ∝ k1/3. This is quite close
to white noise, so one might expect that the correlation function to be simply proportional to the
overlap integral, and this is indeed quite a good approximation. As we will see, the main effect of
the slight non-flatness of the spectrum results in a slight anti-correlation at lags just beyond overlap.
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2.3 Equal Time SHABAR Correlation Functions

For a single refractive layer, the equal-time correlation funtion for two scintillometers with separation
perpendicular to the source direction d is

ξ(x) ≡ 〈δI1δI2〉x = h2 sec2 ζ

∫
d2k

(2π)2
Pη(k)k4|W̃src(k)|2|W̃det(k)|2eik·x. (11)

where, 〈η̃(k)η̃?(k′)〉 = (2π)2δ(k−k′)Pη(k) and, according to Kolmogorov theory, the 2-D power spec-
trum for the wavefront deformation arising from a slab of turbulence is Pη(k) = α∆h sec ζC2

n(h)k−11/3

where α is a constant. Summing over multiple layers yields

ξ(x) = α sec3 ζ

∫
dh C2

n(h)h2

∫
d2k

(2π)2
k1/3|W̃src(k)|2|W̃det(k)|2eik·x. (12)

We can now ask whether the conditions assumed above actually apply. Approximating the
source as a uniform disk with a sharp edge, the window functions here are constant for k <∼ 1/D
and fall off as 1/k3 for k >∼ 1/D. If the refractive layer lies at altitude z � Ddet/Ω then the source
window cuts in before the detector window function (which can therefore be ignored), and, for zero
lag (d = 0), the integral over spatial frequency is dominated by frequencies around k ∼ 1/(zΩ),
so k2zλ ' λ/zΩ2. This falls off with increasing height, and, at z ∼ Ddet/Ω, the lower limit of
its domain of applicability, k2zλ ∼ λ/(DdetΩ) = 5 × 10−3λ0.5/Ddet,0.01Ω0.01 where λ0.5 is the
wavelength in units of 0.5µm, Ddet,0.01 is the detector diameter in cm, and Ω0.01 is the angular
diameter in units of 0.01 radians. Evidently, k2zλ is very small, so geometric optics should provide
a good approximation. The phase fluctuations on scale k are on the order ϕ ∼

√
6.88(kr0)−5/6, so

k2λzϕ ∼ (λ/r0)Ω−7/6(r0/z)1/6. This is again a decreasing function of altitude, and at z ∼ Ddet/Ω
we have k2λzϕ ∼ 2.5(λ/r0)Ω−1(r0/Ddet)1/6 ∼ 10−3λ0.5r

−5/6
0,0.3 D

−1/6
det,0.01Ω

−1
0.01, where r0,0.3 is the Fried

length in units of 0.3m. This again is very small, so the assumption of linearity is very good indeed.
For a detector size on the order of one cm, and for refractive fluctuations at heights greater than a

meter, we can ignore the smoothing with the detector window, and we have W̃src(k) = W̃p(kΩh sec ζ)
where W̃p(k) is the transform of the normalized shape of the moon at phase p, scaled to have unit
diameter. We can then write the auto-correlation function as

ξ(x) =
αΩ−7/3 sec2/3 ζ

(2π)2

∫
dh C2

n(h)h−1/3ξ0(x/Ωh sec ζ) (13)

where
ξ0(x) =

∫
d2y y1/3|W̃p(y)|2eiy·x (14)

which, for the case of a featureless circular disk, is equivalent to Beckers’ result.

2.4 Relation to the Seeing

The structure function for phase fluctuations is

Sϕ(x) = 〈(ϕ(x)− ϕ(0))2〉 = (2π/λ)2α sec ζ

∫
dh C2

n(h)
∫

d2k

(2π)2
k−11/34 sin2(k · x/2). (15)

This is conventionally written as Sϕ(x) = 6.88(x/r0)5/3, and the Fried length is related to the width
of the seeing disk by FWHM ' 0.98λ/r0, so the image quality is related to C2

n(h) by

FWHM5/3 =
4

6.88
λ−1/3α sec ζ

∫
dh C2

n(h)
∫

d2y y−11/3 sin2(x̂ · y/2). (16)

It is interesting to compare (13) and (16). Some notable features are:
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• The C2
n(h) integral has a slightly different weighting; for a given amount of seeing, the SHABAR

fluctuations amplitude scales as h−1/6, so high altitude seeing will produce smaller scintillation.
A more powerful discriminator, however, is the dependence on spatial separation. Another
useful discriminator is the time-scale for the fluctuations, which is shorter for lower altitude
refraction.

• The SHABAR signal increases more slowly with zenith angle than the seeing.

• The SHABAR relative intensity fluctuations will be larger for observations of the crescent
moon, with the covariance scaling inversely as the width of the crescent. For photon counting
limited observations, the signal to noise is independent of the phase.

• The SHABAR signal is independent of the wavelength, while the seeing width has the familiar
λ−1/5 dependence.

It is also interesting to ask: How sensitive is the predicted ratio of seeing to SHABAR fluctuation
strength to the assumption of Kolmogorov scaling? For high altitude seeing, this can be an important
issue. The width of the seeing disk depends primarily on fluctuations on the Fried scale r0, with is
on the order of tens of cm, while the SHABAR fluctuations probe the refractive index on the order
of ten (one hundred) m for fluctuations at 1 (10) km altitude. These scales are very different, and
the latter may be beyond the outer scale. However, for fluctuations at an altitude of a few tens of
m, the SHABAR fluctuations are directly probing the same scales as are responsible for the seeing,
so the comparison should be relatively insensitive to departures from pure Kolmogorov scaling.

Taking the ratio of (13) at zero lag (d = 0) and (16) for a single refractive layer yields

ξ(0)
(FWHM)5/3

=
6.88
16π2

Ω−7/3 sec−1/3 ζ

(
λ

z

)1/3 ∫
d2y y1/3|W̃p(y)|2∫

d2y y−11/3 sin2(x̂ · y/2)
(17)

For full moon, we find I1 =
∫

d2y y1/3|W̃p(y)|2 ' 81 while I2 =
∫

d2y y−11/3 sin2(x̂ · y/2) ' 2.5,
from which we obtain

ξ(0) = 3.5× 10−7(z/10m)−1/3(FWHM/1′′.0)5/3 (18)

in good agreement with Beckers’ results.
For the crescent moon the window function has a greater bandwidth and, for a crescent of width

one fifth of the lunar diameter, I1 ' 630 and the zero-lag auto-correlation function for the fiducial
1 arcsec seeing layer at 10 m altitude, 2.5 × 10−6. The shadow band auto-correlation function is
shown for a selection of phase angles in figure 1. Note how the width of the auto-correlation function
decreases for the crescent moon, especially in the direction toward the sun. A surface plot the the
SBSCF for the full moon is shown in figure 2.

2.5 Spatio-Temporal Correlation Function

In the ‘frozen-flow’ approximation, η(x, t) = η(x − vt), and the spatio-temporal autocorrelation
function is ξ(x, t) = ξ0(x−vt). Here v = (vx, vy) is related to the true velocity v′ by v = (v′

x, v′
y cos ζ)

where subscripts x and y denote the azimuthal and altitude components. This model predicts that
measurements of the spatial correlation function at a finite time-lag should be offset by a distance
v∆t. If the wind velocity is known, this provides a check on the reality of the signal (though this
would not discriminate against false signals arising from patchy dust or mist extinction). This also
tells us what time sampling is needed (or how much the signal will be reduced if we have too long an
averaging time). For a wind speed on the order of 10 m/s, the time-scale is τ ∼ hΩ/v ' 10msh10.

The frozen-flow approximation will only hold for time-lags less than the turnover time τ? for
eddies of the approriate size. According to Kolmogorov theory, the turnover time scales as the 2/3
power of the eddy size, and it follows that τ? ∼ (router/Ωh)1/3τ . For boundary layer fluctuations it is
reasonable to assume that the outer scale is approximately the same as the height, so τ?/τ ∼ Ω−1/3,
or equivalently that the persistence time for an eddy is around 5 times the fluctuation time-scale.
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Figure 1: Window functions and shadow-band autocorrelation function. Length scales assume an
altitude of 10m and scale linearly with altitude. Note the different z-scale and also the different
length scale for the crescent moon correlation funnction.

6



Figure 2: Shadow band spatial correlation function for the full moon.

A sensible model for the spatio-temporal correlation function is a sum over layers:

ξ(x, t) =
αΩ−1/3 sec2/3 ζ

4π2

∑
l

Alξp((x− vlt)/Ωhl sec ζ)F (t/τl) (19)

where Al = ∆hC2
n(h)h−1/3 and F (t/τl) describes the decorrelation arising from eddy turnover. The

correct form of this function can be determined empirically. This equation is valid in the limit of a
point like detector, or equivalently, for seeing generated at heights greater than a few metres.

2.6 Confusion With Other Sources of Extinction

One worry is the possibility of correlated intensity fluctuations arising from extinction from dust,
mist or clouds. However, to the extent that we can treat such effects as “passive additives” then we
would expect these to have a very different power spectrum: P ∝ k−11/3 as compared to P ∝ k1/3

for the effect considered here. Extinction would therefore be expected to show large long-range and
long-time correlations.
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3 Inversion of 1D Correlation Function

The SHABAR correlation function is a sum of patterns like those shown in figure 1 but with different
scales according to their distance from the scintillometer. We would like to invert this to get C2

n(h).
One approach is to perform some kind of chi-squared minimization of the deviation of the observed
correlation function from the model, possibly with some kind of regularization to enforce smoothness
(refs...). Here we explore a different approach.

3.1 Fourier Inversion

In the limit that the detector size can be neglected, the equal time correlation function as obtained
from a 1-dimensional SHABAR array can be written as an integral along the line of sight:

ξ(x) =
∫

dz

z
A(z)ξ0(x/z) (20)

where ξ0(x) = ξp(x = xn/Ω sec ζ) with n a unit vector along the array, and where

A(z) ≡ αΩ−7/3z2/3C2
n(z/ sec ζ)/4π2 (21)

The projection (20) can readily be inverted by change of variables from x, z to χ = log x and
ρ = log z. We then have

ξ(χ) =
∫

dρ A(ρ)ξ0(χ− ρ) (22)

where ξ(χ) ≡ ξ(x = exp(χ)) and A(ρ) = A(x = exp(ρ)) i.e. the functional form is inferred from
whether the argument is greek or latin. This is a simple convolution, so we can obtain the distribution
of scintillation strength as a function of log distance A(ρ) by Fourier transforming ξ(χ) → ξ̃(κ) =∫

d2χξ(χ)eiκχ, multiplying by a filter 1/ξ̃0(κ) to obtain

Ã(κ) = ξ̃(κ)/ξ̃0(κ) (23)

and then transform back to obtain A(ρ) as a convolution

A(ρ) =
∫

dχ ξ(χ)ξ−1
0 (χ− ρ) (24)

where the convolution kernel ξ−1
0 (χ) is the function whose Fourier transform is the inverse of that

of ξ0(χ).

3.2 Regularized Fourier Inversion

There is, of course, a problem with this simple prescription: The transform ξ̃0(κ) becomes very small
at high spatial frequency. This may make it difficult to reliably estimate, and, even if this can be
done, multiplying by its inverse will strongly amplify high frequency noise in the estimated ξ(χ).
This problem can be overcome by ‘softening’ the filter and replacing

1
ξ̃0(κ)

→ ξ̃?
0(κ)

|ξ̃0(κ)|2 + ε2
(25)

The regularization parameter ε stops the inverse filter from blowing up at high frequencies and allows
one to control the distance resolving power of the inversion algorithm. The result is a well defined
kernel

ξ−1
0 (χ) =

∫
dκ

2π

ξ̃?
0(κ)

|ξ̃0(κ)|2 + ε2
e−iκχ. (26)

that, when convolved with an estimated correlation function, will give a smoothed version of the
true log-distance distribution function A(ρ) with log-distance resolution ∼ 1/κ? where κ? is such
that |ξ̃0(κ?)| ' ε.

An algorithm for inverting the projection (20) is as follows:
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1. Obtain a CCD image of the source Wsrc(x) such as those shown in the left hand panels of
figure 1.

2. Compute it’s power-spectrum |W̃ (k)|2 and multiply by k1/3 and inverse transform to obtain
ξp(x) (as sshown in the right hand panels of figure 1).

3. Extract a linear sample ξ0(x) = ξp(xn/Ω sec ζ).

4. Resample this to a logarithmic spacing extending from x � 1 to x � 1 and well beyond the
range of baselines sampled by the array.

5. Adjust the low x end so that it varies smoothly and has ξ0(xmin) = ξ0(xmax) so that we can
apply the FFT. In the example shown figure 3 this was done by first adding a constant to set
ξ0(xmax) = 0 and then multiplying the low x end by half of a cosine wave so that ξ0(x) tends
smoothly to zero as x → xmin. This example was for a vertical slice through the correlation
function for the full moon (bottom right panel of figure 1).

6. Transform the result, compute ξ̃?
0(κ)/(|ξ̃0(κ)|2 + ε), and inverse transform to obtain ξ−1

0 (χ).

7. Now take the observed estimates ξ̂(x) obtained from the array. Resample these to equal
logarithmic spacing as above, with adjustment of the low x values so that the function wraps
smoothly and continuously.

8. Convolve with ξ−1
0 (χ) to obtain A(ρ) and hence A(z) = A(ρ = log(z)).

9. Finally compute C2
n(h) from (21). Examples of the reconstruction are shown in figure 4.

3.3 Relation To Wiener Filtering

The regularization procedure proposed here is similar to Wiener filtering. The Wiener filter is that
which results in an estimate of Â(ρ) which is as close as possible in a least squares sense to the true
profile.

The Wiener filter for this problem is

Ã(κ) =
ξ̃2
S(κ)

ξ̃2
S(κ) + ξ2

N (κ)
ξ̃(κ)
ξ̃0(κ)

. (27)

This required some estimation of how the ensemble average of the measured correlation function is
divided into signal and noise: 〈ξ̃2(κ)〉 = ξ2

S(κ) + ξ2
N (κ), which may be difficult, but in the situation

that the signal-to-noise ratio becomes small at high spatial frequencies, the Wiener filter has the
same general effect as the regularization proposed above that high frequencies are suppressed as
compared to the formal inverse. The Wiener filter is a compromize between over-sampling (which
results in excessive noise variance) and under-sampling (which results in variance because real high
frequency features are suppressed.

Since ξ̃2
S(κ) = Ã2(κ)ξ̃2

0(κ), the Wiener filter is equivalent to the regularized filter if ξ̃2
N (κ) =

ε2Ã2(κ). These approaches are equivalent if both the noise and A have white spectra.
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Figure 3: Illustration of re-sampling of a slice through 2-D correlation function computed from a
CCD image of the moon into equally space logarithmic interval. The source image is shown in
the bottom right panel of figure 1. Computed values are indicated by the thick line. Smoothly
interpolated values have been generated to allow use of numerical FFT in log-position coordinates.
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Figure 4: Illustration of regularized Fourier inversion of 1D SHABAR correlation function to ob-
tain C2

n(h). Left hand panels show the kernel ξ−1
0 (χ) for a variety of values of the regularization

parameter. On the right are shown the reconstructed A(ρ) for noise-free data corresponding to a
box-car.
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3.4 An Approximate Inversion Alorithm

The Fourier inversion technique involves convolving with an extended function, and therefore requires
measurements of the SBSCF over a wide range of log-separation. Here we investigate an alternative
approximate 1-D inversion algorithm that involves convolution with a kernel with more compact
support. This algorithm is stimulated by the observation that, for the full or gibbous moon, the
SBSCF is a cone with relatively uniformly sloping sides for x < D, but the slope then changes
dramatically and, aside from a slight ringing, then becomes very small (see figure 2). The ringing is
a consequence of the positive spectral index n = 1/3 for the wavefront Laplacian power spectrum.
Had we assumed a k−4 spectrum for the refractive index rather than k−11/3 then the Laplacian
would have a white spectrum and the SBSCF would be simply the overlap integral, and would be
identically zero for x > D. Thus, this sharp feature is primarily a consequence of the shape of the
object, and not much affected by the precise form of the refractive index fluctuations. If we take
a radial slice through the SBSCF for a single layer at distance z then the second derivative ξ′′(x)
will be particularly strong for x = Ωz. This suggests that some kind of smoothed second derivative
of the SBSCF might provide a useful approximate quasi-local estimator of the scintillation strength
profile.

The contribution to ξ′′(x) from an interval of heights dh is

dξ′′(x) =
α

4π2
sec2/3 ζΩ−7/3C2

n(h)h−1/3dh
d2ξ0(x/hΩ sec ζ)

dx2
(28)

Now if we model ξ′′0 (y) = d2ξ0(y)/dy2 as ξ′′0 (y) = aδ(y − 1) with a some constant (i.e. the second
derivative is strongly localised around y = 1) we have

ξ′′(x) =
aα

4π2
Ω−16/3 sec−7/3 ζx

∫
dy

y2
C2

n(x/yΩ sec ζ)(x/yΩ sec ζ)−7/3δ(y − 1) (29)

and performing the integral yields

x2ξ′′(x) =
aα

4π2
Ω−7/3 sec2/3 ζ

[
h2/3C2

n(h)
]

h=x/Ω sec ζ
. (30)

In this model, applying the dimensionless operator x2d2/dx2 to ξ(x) yeilds an estimate of h2/3C2
n(h),

the contribution to the scintillation strength per log interval of height. This in turn provides us with
an estimate of C2

n(x).
Since we have noisy data, direct differentiation of the estimated ξ̂(x) is not useful, but (30)

suggests that x2 times some kind of smoothed second derivative operator might give a practical
estimator. One possibility is to estimate ξ′′(x) by convolving with the second derivative of a Gaussian
and to define

A(x) =
x2

σ2(x)

∫
dx′

√
2πσ(x)

(
x′2

σ2(x)
− 1

)
e−x′2/2σ2(x)ξ̂(x− x′) (31)

with σ(x) = αx and with α some moderately small number that sets the resolution. This tends to
x2ξ′′(x) as α → 0. This model is only an approximation, of course, since the true ξ′′(x) is not a
pure delta function. Consequently, the response of A(x) to a single refractive layer will not be a
delta function at x = Ωh sec ζ, but will generally show some false signal at other x values, so there
will be aliasing. The estimator has been constructed so that as we vary the height of the layer the
response, plotted in logarithmic coordinate, maintains it’s shape. In figure 5 we show how well this
works in practice. In the left hand panels we show the response to a single layer at height h = 1 for
various smoothing parameters.
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Figure 5: Left hand panels show the response of the scintillation strength estimator defined in (31)
to a single refractive layer. There is a nice strong spike, but there also side-lobes. The inset plots
show, on a linear scale, the smoothing kernels. The central and right hand panels show 3 and 10
layers respectively. The layers are equally spaced in log height and have equal (lunar) scintillation
strength. It would appear that the estimator should give an estimate of the scintillation, and hence
C2

n, profile good to perhaps 15%.
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Figure 6: Shadow band auto-correlation function measured by Paul Hickson.

4 Hickson’s Results

Paul Hickson at UBC has constructed and successfully deployed a lunar SHABAR scintillometer
array. He used 1cm diameter avalanche photo-diodes (APDs) with a range of baselines from 5.4cm
to 2.67m. Illuminated by the full moon, these generate ∼ 2 × 1011 photo-electrons per second.
Example results are shown in figure 6. The bandwidth of his system is 500Hz, and he plans to
increase this to 1kHz.

Hickson has also developed an inversion algorithm.
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5 Signal To Noise

Let the average lunar illumination generate photo-electrons at a rate R. The rms shot-noise fluctu-
ation in the intensity averaged over a sample time ∆t is ∆ISN = (R∆t)−1/2. If we take a series of
N pairs of samples from two independent detectors with separation d, we can multiply them and
average to obtain an estimator of the correlation function:

ξ̂(d) =
1
N

∑
∆I1∆I2. (32)

In the absence of any signal, this is the sum of N independent random variates ∆I1∆I2 with zero
mean and typical value ∆I2

SN = 1/(R∆t), resulting in rms fluctuations in the estimator

σξ ≡ 〈∆ξ(d)2〉1/2 ∼ 1√
NR∆t

= (R
√

τ∆t)−1 (33)

where τ = N∆t is the averaging time. The fluctuation in the correlation function on the order of
the inverse square root of the number of photo-electrons generated in a time

√
τ∆t. This becomes

large if we make the sampling time very short. However, for fluctuations arising from height h,
the time-scale for intensity fluctuations is τ(h, v) ∼ Ωh/v ∼ 10ms h10/v10 with h10 = h/10m and
v10 = v/10m/s, and we can afford to take the sampling time to be <∼ τ(h, v) (or rebin) and the
limiting statistical uncertainty is σξ(h) ∼ 1/R

√
τΩh/v.

For a mm size detector we expect R ' 109/s, so, for a sample time of 1ms and averaging over 10
seconds we obtain a statistical uncertainty σξ ∼ 10−8, as compared to an expected signal ξ ∼ 10−6.
The uncertainty in the intensity, averaged over an interval ∼ τ(h, v) is σI ∼

√
Rτ(h, v) ∼ 3× 10−5.

This is quite comparable to the actual signal. This means that if one were to use a larger detector
then the statistical uncertainty would be smaller, but the true uncertainty in the ensemble average
correlation function would then be limited by the finite number of independent realizations rather
than by photon counting statistics. A 1mm size detector is therefore well matched to the expected
signal amplitude. Since a small detector is advantageous, especially if using the crescent moon, this
size is probably close to optimal.

It would be desirable to develop a method for fitting a model of the form 19 to estimates of the
spatio-temporal correlation function ξ̂(x, t). This has non-trivial impact on the choice of spacing of
the scintillometers.
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