

PanSTARRS Data Segment Concept Design Review February 2003

Topics

- What is the data segment?
- Current concept of data flow
- Data processing
- Data management

What is the Data Segment?

- Data storage retains and accesses data for other components and user interface
- Therefore, systems engineering is intimately tied to the data segment

System Engineering: An Essential Part of Pan-STARRS' Success

- Coordination and integration
- Multiple technical disciplines "orbits"
- Multiple phases of development
 - System requirements analysis and design
 - System implementation
 - System testing

Data Segment: Technical Approach

JIVERSITY OF

- Remember the user: science requirements drive what is acquired, processed, stored, AND retrieved
- Data analysis, modeling, processing and management must be considered end-to-end, not separable components
- Data management is more than a database
 - Don't duplicate data: processing vs long-term storage
 - Management of data retrieval is essential
- Must consider long-term ramifications of very large data base management: technology, cost, science benefit
- Design to cost
 - Nominal vs maximal set of science requirements
 - Consider impact on upgrades of very large database \rightarrow modular
 - Consider impact of new/improved processing algorithms → plug-able methods

Current Concept of Data Flow: End-to-End

Top Level Data Flow and Interfaces

Second Level: Significant Phases

Phase 1: Detector Calibration

Telescope-centric coordinates, processes performed for each CCD

Phase 2: Map and Warp to Sky

INIVERSITY OF HAWAI

WC

Telescope-centric coordinates, processes performed for each Telescope

Phase 3: Create Sky Image

Phase 4: Augmented Image Processing

Phase 5A: Pixel-Based Scientific Product Creation-Basic – NEO Detection

NIVERSITY OF HAWAI

WC

Phase 5B: Pixel-Based Scientific Product Creation-Basic – Cumulative Sky Image Update

NIVERSITY OF HAWAI

WC

NOTE: These processes may not be conducted for each observation but may be triggered when appropriate

Phase 5C: Pixel-Based Scientific Product Creation-Enhanced – Catalog Update

ASTRONOMY ASTRONOMY Market Constitution A Englaye-Const Const Const Const Const Cons

Phase 5D: Pixel-Based Scientific Product Creation-Enhanced – KBO Detection

NIVERSITY OF HAWA

Phase 5E: Pixel-Based Scientific Product Creation-Enhanced – Full Color Sky Image

NIVERSITY OF HAWA

Phase 5F: Pixel-Based Scientific Product Creation-Enhanced – Variable Static Objects

NIVERSITY OF HAWA

Phase 6: Distribution and Data-Based Scientific Product Creation

Data Processing – MHPCC

Data Processing - Topics

- Who are we?
- Implementation plan
- Risks and mitigations

Data Management – SAIC/Winter

Data Management - Topics

- Who are we?
- Implementation plan
- Risks and mitigations

Data Management - Who Are We?

- Dr. Julie Rosen (PI) Mathematician, requirements analysis
- Dr. John Wick Systems engineer, requirements analysis
- Dr. Richard Meyer Systems architect, very large dbms analysis and design
- Mr. Wayne Smith Systems engineer, system software analysis and design
- Dr. Robert Eek Data architect, very large dbms design and implementation

/Iui	Name	Phone	Email
	Dr. Julie Rosen	703-676-7354	Julie.A.Rosen@saic.com
	Dr. John Wick	703-676-2738	John.A.Wick@saic.com
	Dr. Richard Meyer	703-941-7526	Richard.Meyer@mindspring.com
	Mr. Wayne Smith	703-676-6522	Wayne.L.Smith@saic.com
	Dr. Robert Eek	703-676-5776	Robert.E.Eek@saic.com
	Dr. Mark Mekaru	703-248-7723	Mark.M.Mekaru@saic.com

Dr. Mark Mekaru – SAIC Sr. Vice President, engineering

SAIC's Systems Engineering Practices: Essential for Effective Implementation

NIVERSITY OF HAW

M

All requirements must be testable and tested

SAIC's Structured Software Development

- Process
 - Rigorous analysis of *all* requirements
 - Functional Requirements
 - Performance Requirements
 - Maintenance Requirements
 - Derived Requirements
 - Development and testing to ensure compliance with *all* requirements
 - Automated configuration control source code <u>and</u> requirements
 - Adherence to software development standards ensures consistency → comprehension → reduced development/maintenance efforts → reduced cost and schedule
- Benefits
 - No surprises after deployment
 - Increased reliability and maintainability translate directly to reduction in overall system cost

Spiral Approach To Data Management Implementation

- Build a little, test a little, then iterate
- Applicable for dynamic problems
 - Basic system requirements known, but details of data flow are in flux at the start
 - System and data requirements will be refined with each iteration, but consistent with basic data management architecture
 - Data processing/management component development are autonomous, provided interface is defined, and collaboration in early design
- System component development done in parallel provide feedback to data management
 - Detectors output influence data processing performance
 - Pipeline processing algorithms impact performance requirements of data management
 - Data management/storage technology (cost vs performance) affects feasibility of meeting science requirements

Data Management: Implementation Plan (1 of 2)

- Year 1 Develop concept of operations
 - Systems-wide "holistic" approach requires collaboration with science, data processing, and systems engineering staff to develop data flow requirements
 - Principal users, their data needs
 - Trade-off studies: cost versus science benefit
- Year 2: Prototype critical development components/ end-to-end path
 - Database architecture with fully loaded contents (simulated data) gives performance bounds, better hardware/firmware/software specs
 - Basic database architecture, simulate/prototype telescope "unit," simulate/prototype data feed, simulate/prototype data storage procedure (including estimate of manual load)
 - Determine trade-off parameters, thresholds, interface details, improved cost estimates, need for enhancements
 - Revise/refine system requirements: analysis, design, interface specs

Data Management: Implementation Plan (2 of 2)

- Year 3: Development and Test
 - Identify component layers and implementation phases
 - Parallel development of components
 - Include periodic testing and feedback for later iterations' inclusion
 - Refinement of interface specification among components
 - High and detailed design of component's modules: I/O among modules, algorithms within modules, I/O with other components
 - Implementation and component testing using simulated I/O data
 - Constant use of configuration control
 - Integration of components
 - $\ Hardware-to-hardware, hardware-to-software, software-to-software$
 - Implementers perform testing
 - Results fed-back for inclusion in next iteration
 - System testing
 - Non-implementer testing, as appropriate for component
 - Results used to refine loading, usability issues
- Year 4: Production and maintenance
 - Repeat development cycle as needed

Areas of Technical Risk for Data Management

Completeness of design

- Different access/retrieval methods mandate distinct data structure/storage design
- High speed buffering required at multiple points to support <u>both</u> re-start and intermediate results
- Performance
 - Processing latency must meet science requirements needs
 - Data storage must be designed to meet retrieval requirements
- Scaling
 - Large volume of image files increases cost, power, floor space beyond budget?
 - Technology dead-ends may preclude full implementation of science requirements
- Evolution
 - Dead-end design can't be upgraded to meet future requirements
 - Advances in technology cannot be incorporated effectively

Mitigating the Data Management Risk

Risk Area	Mitigation Approach (as seen from year 1)
Completeness of design	 Thorough understanding of science and processing requirements Capture data flow for the whole system
Performance	 Compare design against existing comparables Prototype elements of concern
Scaling	Conduct trade studiesPrototype elements of concern
Evolution	 Identify decision points Maintain upgrade strategies/alternate paths