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TopicsTopics

ß What is the data segment?

ß Current concept of data flow

ß Data processing

ß Data management
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What is the Data Segment?What is the Data Segment?

ß Components and interfaces required for:
• Data analysis
• Data modeling
• Data processing
• Data storage
• Data retrieval for other system components

and user interface
ß Data is integral to every component in the

system
• Telescope acquires data
• Detectors output data
• Data processing manipulates data
• Data storage retains and accesses data for

other components and user interface
ß Therefore, systems engineering is intimately tied

to the data segment

Detectors Telescope

Data

Systems
Engineering
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Data

System Engineering:System Engineering:
An Essential Part of Pan-STARRSAn Essential Part of Pan-STARRS’’ Success Success

ß Coordination and integration
ß Multiple technical disciplines – “orbits”
ß Multiple phases of development

• System requirements analysis and design
• System implementation
• System testing

CCD Optics
Data Management

User/Web Interfaces

Mission Management

Data Processing
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 Data Segment: Technical Approach Data Segment: Technical Approach

Consider the whole system, not simply data objects and methods

ß Remember the user: science requirements drive what is acquired,
processed, stored, AND retrieved

ß Data analysis, modeling, processing and management must be
considered end-to-end, not separable components

ß Data management is more than a database
• Don’t duplicate data: processing vs long-term storage
• Management of data retrieval is essential

ß Must consider long-term ramifications of very large data base
management: technology, cost, science benefit

ß Design to cost
• Nominal vs maximal set of science requirements
• Consider impact on upgrades of very large database Ë modular
• Consider impact of new/improved processing algorithms Ë

plug-able methods
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Current Concept of Data Flow:Current Concept of Data Flow:
End-to-EndEnd-to-End
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Top Level Data Flow and InterfacesTop Level Data Flow and Interfaces
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Second Level: Significant PhasesSecond Level: Significant Phases
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Phase 1: Detector CalibrationPhase 1: Detector Calibration
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Phase 2:  Map and Warp to SkyPhase 2:  Map and Warp to Sky
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Phase 3: Create Sky ImagePhase 3: Create Sky Image
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Phase 4: Augmented Image ProcessingPhase 4: Augmented Image Processing
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Phase 5A: Pixel-Based Scientific ProductPhase 5A: Pixel-Based Scientific Product
Creation-Basic Creation-Basic –– NEO Detection NEO Detection
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Phase 5B: Pixel-Based Scientific ProductPhase 5B: Pixel-Based Scientific Product
Creation-Basic Creation-Basic –– Cumulative Sky Image Update Cumulative Sky Image Update
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Phase 6: Distribution and Data-Based ScientificPhase 6: Distribution and Data-Based Scientific
Product CreationProduct Creation
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Data Processing Data Processing –– MHPCC MHPCC
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Data Processing - TopicsData Processing - Topics

ß Who are we?

ß Implementation plan

ß Risks and mitigations
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Data Management Data Management –– SAIC/Winter SAIC/Winter
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Data Management - TopicsData Management - Topics

ß Who are we?

ß Implementation plan

ß Risks and mitigations
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Data Management - Who Are We?Data Management - Who Are We?

ß Dr. Julie Rosen (PI) – Mathematician, requirements analysis

ß Dr. John Wick – Systems engineer, requirements analysis

ß Dr. Richard Meyer – Systems architect, very large dbms analysis and design

ß Mr. Wayne Smith – Systems engineer, system software analysis and design

ß Dr. Robert Eek – Data architect, very large dbms design and
implementation

ß Dr. Mark Mekaru – SAIC Sr. Vice President, engineering

Mark.M.Mekaru@saic.com703-248-7723Dr. Mark Mekaru

Robert.E.Eek@saic.com703-676-5776Dr. Robert Eek

Wayne.L.Smith@saic.com703-676-6522Mr. Wayne Smith

Richard.Meyer@mindspring.com703-941-7526Dr. Richard Meyer

John.A.Wick@saic.com703-676-2738Dr. John Wick

Julie.A.Rosen@saic.com703-676-7354Dr. Julie Rosen

EmailPhoneName
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Plan of Operations

Requirements Analysis

Architecture Design

Subsystem Design

Component Design

Development,
Acquisition

Component Test

Subsystem Integration and Test

System Integration

System Test

Deployment/Employment

P
ro

g
ra

m
 D

et
ai

l

Program Maturity

SAICSAIC’’s Systems Engineering Practices:s Systems Engineering Practices:
Essential for Effective ImplementationEssential for Effective Implementation

Year 1All requirements must be testable and tested
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SAICSAIC’’s Structured Software Developments Structured Software Development

ß Process
• Rigorous analysis of all requirements

– Functional Requirements
– Performance Requirements
– Maintenance Requirements
– Derived Requirements

• Development and testing to ensure compliance with all requirements
• Automated configuration control – source code and requirements
• Adherence to software development standards ensures consistency Ë

comprehension Ë reduced development/maintenance efforts Ë reduced
cost and schedule

ß Benefits
• No surprises after deployment
• Increased reliability and maintainability translate directly to reduction in

overall system cost
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Spiral Approach To Data Management ImplementationSpiral Approach To Data Management Implementation

ß Build a little, test a little, then iterate
ß Applicable for dynamic problems

• Basic system requirements known, but details of data flow are in flux at
the start

• System and data requirements will be refined with each iteration, but
consistent with basic data management architecture

• Data processing/management component development are autonomous,
provided interface is defined, and collaboration in early design

ß System component development done in parallel provide feedback to data
management

• Detectors output influence data processing performance
• Pipeline processing algorithms impact performance requirements of

data management
• Data management/storage technology (cost vs performance) affects

feasibility of meeting science requirements

Start

Multipl
e
releases
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Data Management: Implementation PlanData Management: Implementation Plan (1 of 2) (1 of 2)

ß Year 1 – Develop concept of operations
• Systems-wide “holistic” approach requires collaboration with science,

data processing, and systems engineering staff to develop data flow
requirements

• Principal users, their data needs
• Trade-off studies: cost versus science benefit

ß Year 2: Prototype critical development components/ end-to-end path
• Database architecture with fully loaded contents (simulated data) gives

performance bounds, better hardware/firmware/software specs
• Basic database architecture, simulate/prototype telescope “unit,”

simulate/prototype data feed, simulate/prototype data storage procedure
(including estimate of manual load)

• Determine trade-off parameters, thresholds, interface details, improved
cost estimates, need for enhancements

• Revise/refine system requirements: analysis, design, interface specs
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Data Management: Implementation PlanData Management: Implementation Plan (2 of 2) (2 of 2)

ß Year 3: Development and Test
• Identify component layers and implementation phases
• Parallel development of components

– Include periodic testing and feedback for later iterations’ inclusion
– Refinement of interface specification among components
– High and detailed design of component’s modules: I/O among

modules, algorithms within modules, I/O with other components
– Implementation and component testing using simulated I/O data
– Constant use of configuration control

• Integration of components
– Hardware-to-hardware, hardware-to-software, software-to-software
– Implementers perform testing
– Results fed-back for inclusion in next iteration

• System testing
– Non-implementer testing, as appropriate for component
– Results used to refine loading, usability issues

ß Year 4: Production and maintenance
• Repeat development cycle as needed
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Areas of Technical Risk for Data ManagementAreas of Technical Risk for Data Management

ß Completeness of design
• Different access/retrieval methods mandate distinct data structure/storage design

• High speed buffering required at multiple points to support both re-start and
intermediate results

ß Performance
• Processing latency must meet science requirements needs

• Data storage must be designed to meet retrieval requirements

ß Scaling
• Large volume of image files increases cost, power, floor space – beyond budget?

• Technology dead-ends may preclude full implementation of science requirements

ß Evolution
• Dead-end design can’t be upgraded to meet future requirements

• Advances in technology cannot be incorporated effectively
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Mitigating the Data Management RiskMitigating the Data Management Risk

ß Identify decision points

ß Maintain upgrade strategies/alternate paths

Evolution

ß Conduct trade studies

ß Prototype elements of concern

Scaling

ß Compare design against existing comparables

ß Prototype elements of concern

Performance

ß Thorough understanding of science and
processing requirements

ß Capture data flow for the whole system

Completeness of design

Mitigation Approach
(as seen from year 1)

Risk Area


